Abstract

We report on the experimental observation of extreme laser spectral broadening and a change in optical transmission in gallium phosphite induced by 25 MV/cm terahertz (THz) single-cycle internal field. Such intense THz radiation leads to twofold transient modifications of the optical properties in the electro-optical crystal. First, the electric field provokes extensive cross-phase modulation via the χ^{(2)} and χ^{(3)} nonlinearities on a copropagating 50fs near infrared laser pulse which turns into 500% spectral broadening. Second, we observe an instantaneous change of the optical transmission occurring at the THz field which is alleged to interband Zener tunneling and charge carrier density modification by impact ionization turning the semiconductor in a metal-like transient state. The presented scheme displays a pathway to coherently control the optical properties of semiconductors on an ultrafast time scale by a strong THz field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.