Abstract

Several genetic metabolic liver diseases share the pathological features of combined steatosis and cholestasis, or steatocholestasis. The aims of this study were to develop and characterize an in vivo model for steatocholestasis and to evaluate the effects of an antioxidant treatment on liver injury, oxidative stress, and mitochondrial perturbations in this model. Obese and lean Zucker rats received intravenous (IV) injections of glycochenodeoxycholic acid (GCDC) and were killed 4 hours later. Liver enzymes were measured; the liver histology was assessed, and hepatic mitochondria were analyzed for mitochondrial lipid peroxidation. In separate experiments, rats received daily injections of subcutaneous (SQ) vitamin E before GCDC infusion. Bile acid-induced injury (serum AST and ALT and liver histology) was more severe in the obese rats than in the lean rats, characterized predominantly by extensive cell necrosis with minimal evidence of apoptosis. SQ vitamin E provided significant protection against IV GCDC-induced hepatic injury, in vitro GCDC-induced permeability transition, and cytochrome C and apoptosis-inducing factor release from isolated mitochondria. Steatosis sensitizes the liver to bile acid-induced necrotic hepatocyte injury, which is responsive to vitamin E therapy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.