Abstract
Since the heart pumps out the blood through the excitation-contraction coupling, simultaneous monitoring of the electrical and mechanical characteristics is beneficial for comprehensive diagnosis of cardiac disorders. Currently, these characteristics are monitored separately with electrocardiogram (ECG) and medical imaging techniques. This work presents a fully implantable device named mechano-electrocardiogram (MECG) sensor that can measure mechanocardiogram (MCG) and ECG together. The key to the success is fabrication of permeable electrodes on a single low-modulus porous nanofiber mat, which helps immediate adhesion of the sensor on the tissue. A strain-insensitive electrode is used as the ECG electrode and a strain-sensitive electrode is used for MCG. The MECG device is implanted subcutaneously in the skin above the heart of the rat. Through a vasopressor (phenylephrine) injection test, the MECG signals indicate that the MCG amplitude is related with blood pressure and the ECG peak interval is more related with heart rate. These results confirm that the MECG device is clinically meaningful for continuous and comprehensive monitoring of the electrical and mechanical characteristics of the heart.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.