Abstract

Simple SummaryThe prevention and treatment of childhood and adolescent overweight and obesity raises the need for accurate body fat assessment. Precise methods are at high technical expense, require exposure to ionizing radiation and are limited to institutional investigations, while common body indicators fail to identify excess body fat. Subcutaneous adipose tissue measured by ultrasound is an alternative approach, which was evaluated in relation to commonly applied body indicators to assess cardio–metabolic risk and its applicability in the field. Subcutaneous adipose tissue measured by ultrasound indicated a clear advantage over commonly applied body indicators and implies that severe body fat assessment errors are to be expected when BMI is used as a measure for body fatness in children. Children or adolescents with identical BMIs may have large differences (>200%) in their amount of subcutaneous adipose tissue. Ultrasound provides an easily applicable, reliable and safe method for accurate assessment of obesity and monitoring treatment responses in children and adolescents at cardio–metabolic risk.Monitoring of children at heightened risk of cardio–metabolic diseases raises the need for accurate assessment of obesity. A standardized approach for measuring subcutaneous adipose tissue (SAT) by bright-mode ultrasound was evaluated in relation to body indices and anthropometry in a cross-sectional sample of 76 South African children (7–10 years) and 86 adolescents (13–17 years) to assess cardio–metabolic risk. SAT was higher in girls as compared to boys (children: 50.0 ± 21.7 mm > 34.42 ± 15.8 mm, adolescents: 140.9 ± 59.4 mm > 79.5 ± 75.6 mm, p < 0.001) and up to four times higher in adolescents than in children. In children, measures of relative body weight showed only a poor correlation to SAT (BMI: r = 0.607, p < 0.001), while in adolescents, BMI correlated high with SAT (r = 0.906, p < 0.001) based on high rates of overweight and obesity (41.8%). Children with identical BMIs may have large differences (>2–3-fold) in their amount of SAT. The moderate association to systolic (r = 0.534, r = 0.550, p < 0.001) and diastolic blood pressure (r = 0.402, r = 0.262, p < 0.001) further substantiates that SAT measured by ultrasound provides an accurate, safe and easy applicable approach for monitoring in children and adolescents at cardio–metabolic risk.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.