Abstract

For the territory of Northern Eurasia (6°E–165°W; 30–75°N) the distribution of anomalous masses in the lithosphere has been estimated in accordance with the lithosphere isostatic model. The method of model construction is based on the admittance technique. The experimental admittance presents a relation between the part of the outer load uncompensated by the Moho undulations and the residual gravity field and is used to select the best model. The 1 × 1° averaged values of topography elevations, basement and Moho depths, sedimentary cover density and gravity anomalies have been used as initial data. According to the correlation equation relating the outer load and Moho depths, the mean density contrast between the lower crust and the subcrustal lithosphere is 0.43 g/cm 3, but the Moho undulation can not provide complete isostatic equilibrium. In some areas, the part of the outer load uncompensated by Moho undulations may be as large as 10 7 kg/m 2 and the residual gravity field is as intensive as + 260 mGal. Assuming that for loads of wavelength > 200 km, local isostatic compensation is valid, in accordance with the admittance analysis, the anomalous masses compensating for the part of the outer load, which is not compensated by Moho undulations, have to be located partly in the lower crust and in the subcrustal layer. The regional trend of anomalous compensating masses is negative under Western Europe, the Mediterranean, Eastern Asia and adjacent marginal seas, and positive under the East European Platform and Western and Central Asia. The local compensating masses correspond to particular tectonic units. The isostatic gravity anomalies of Northern Eurasia have been determined and the long-wave component of the field reflecting anomalous masses under the isostatic compensation level has been evaluated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.