Abstract
Three sizes of Huadian oil shale lumps from 1cm to 10cm were extracted by sub-critical water at 350°C and 16MPa for 2–70h. The oil shale lumps were fractured alone the shale texture in sub-critical water that greatly improved the extraction efficiency of bitumen from the large- and middle-sized sample. The extract yields of bitumen from different sized samples were similar when the extraction time is longer than 20h and stabilized at about 18wt.% (ad) after 50h duration. With the increase of extraction time, asphaltene and preasphaltene extracts were gradually decomposed to maltene. The gas chromatography–mass spectrometry (GC–MS) analysis of the extracts showed that n-alkanes, n-alk-1-enes, isoprenoids, n-alk-2-ones and n-alkanoic acids were the major components. In contrast, aromatic extracts were rare and most of them were remained in the shale residue. The pyrolysis gas chromatography–mass spectrometry (Py-GC–MS) analysis of the spent shale showed that the final undecomposed organics in kerogen were some macromolecular linear hydrocarbon, n-alk-2-ones and n-alkanoic acids fragments. The comparison of the classical pyrolyzate and the sub-critical water extracts showed that the water extracts contained more long-chain alkanes than anhydrous pyrolysis and the alkene extracts could transform to alkanes in sub-critical water. Moreover, the n-alkanoic acids could be decomposed to short-chain compounds through the cleavage of carbon carbon bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.