Abstract

Ignition in methane/air mixtures has been achieved using low energy seed laser pulses and an overlapping subcritical microwave pulse. It is shown that the extremely weak ionization of the laser localizes the microwave energy deposition—leading to rapid heating, high temperatures, and ignition. Multiple simultaneous localized regions of ignition are also achieved using the same microwave pulse. Interactions of the seed laser pulse and microwave heating pulse were observed using schlieren and shadowgraph to record the intensity of heating, the scale of the interaction, and for confirmation of ignition. In addition, a coupled one-dimensional gasdynamic-plasma dynamic model has been developed to follow the rapidly evolving plasma properties and the gas properties achieved through this interaction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.