Abstract

This paper examines subcritical cracking in a rock panel or slab containing either a pre-existing edge or a center crack perpendicular to the panel surface. The panel is subject to periodic surface temperature variation on one side of the panel while the other is kept at a constant temperature. The thermally induced stress intensity factors are determined using superposition technique by employing the fundamental point load solution for an edge crack or a center crack in a slab of finite thickness. Rock panel is modeled as a long elastic strip with either a free or a fully constrained lateral end condition. The temperature variations versus time at various depths of the rock panel appear roughly as a sinusoidal function. The lateral thermal stress for the free end case is larger than the constrained end case; whereas stress intensity factors for both edge and center cracks in the constrained end slab are 1000 times larger than that of free end case. Subcritical crack propagation in rock panels on façade is then estimated as a function of time. This subcritical crack propagation continues until a critical crack size is attained and the rock panel will fail under wind load. This new theoretical framework provides a new paradigm to examine the mechanisms of time-dependent cracking in rock panels on façade of buildings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.