Abstract

BackgroundValvular aortic stenosis is the most common cause of left ventricular hypertrophy due to gradually increasing pressure work. As the stenosis develop the left ventricular hypertrophy may lead to congestive heart failure, increased risk of perioperative complications and also increased risk of sudden death. A functional porcine model imitating the pathophysiological nature of valvular aortic stenosis is very much sought after in order to study the geometrical and pathophysiological changes of the left ventricle, timing of surgery and also pharmacological therapy in this patient group.Earlier we developed a porcine model for aortic stenosis based on supracoronary aortic banding, this model may not completely imitate the pathophysiological changes that occurs when valvular aortic stenosis is present including the coronary blood flow. It would therefore be desirable to optimize this model according to the localization of the stenosis.MethodsIn 20 kg pigs subcoronary (n = 8), supracoronary aortic banding (n = 8) or sham operation (n = 4) was preformed via a left lateral thoracotomy. The primary endpoint was left ventricular wall thickness; secondary endpoints were heart/body weight ratio and the systolic/diastolic blood flow ratio in the left anterior descending coronary. Statistical evaluation by oneway anova and unpaired t-test.ResultsSub- and supracoronary banding induce an equal degree of left ventricular hypertrophy compared with the control group. The coronary blood flow ratio was slightly but not significantly higher in the supracoronary group (ratio = 0.45) compared with the two other groups (subcoronary ratio = 0.36, control ratio = 0.34).ConclusionsA human pathophysiologically compatible porcine model for valvular aortic stenosis was developed by performing subcoronary aortic banding. Sub- and supracoronary aortic banding induce an equal degree of left ventricular hypertrophy. This model may be valid for experimental investigations of aortic valve stenosis but studies of left ventricular hypertrophy can be studied equally well by graduated constriction of the ascending aorta.

Highlights

  • Valvular aortic stenosis is the most common cause of left ventricular hypertrophy due to gradually increasing pressure work

  • Severe valvular aortic stenosis eventually leads to left ventricular failure characterized by diminished stroke volume due to increased pressure work and compensatory increase in end diastolic volume and pressure

  • To our knowledge there are no existing experimental porcine models for aortic stenosis based on subcoronary aortic banding

Read more

Summary

Introduction

Valvular aortic stenosis is the most common cause of left ventricular hypertrophy due to gradually increasing pressure work. Severe valvular aortic stenosis eventually leads to left ventricular failure characterized by diminished stroke volume due to increased pressure work and compensatory increase in end diastolic volume and pressure. In our institution Lunde et al [16] developed a porcine model for left ventricular hypertrophy by banding the ascending aorta downstream of the coronary ostia. This method creates a model that imitates the condition of aortic coractation or arterial hypertension rather than valvular aortic stenosis

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.