Abstract
ABSTRACTMicrostructures offer enhancements in boiling heat transfer by increasing bubble departure frequency, active nucleation site density, critical cavity size, and surface area. Integration of microstructures to surfaces alters significant surface parameters such as porosity of the microstructured plates, contact angle, and configuration of microstructures on the surface, which all affect boiling heat transfer. The goal of this study is to investigate boiling heat transfer on different microstructured plates and the effect of various microscale surface morphologies on boiling heat transfer. The microstructured surfaces were formed on aluminum alloy 2024 sheets with the use of a simple and environmentally friendly technique of random mechanical sanding (grits of #36, #60, #400, and #1,000). Distilled water was pumped using a micro gear pump to the rectangular minichannel test section at flow rates of 100, 180, and 290 ml/min, which correspond to mass fluxes of 5.46, 10.58, and 16.15 kg/m2.s, respectively. It was observed that surfaces with low grit (grit #36) showed no considerable enhancement, whereas the use of higher grit counts considerably enhanced boiling heat transfer up to a critical grit count. The results were supported by the images from the performed visualization of flow boiling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Nanoscale and Microscale Thermophysical Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.