Abstract

ObjectivesThe authors hypothesized that quantitative computed tomography (QCT) imaging would reveal subclinical increases in lung congestion in patients with heart failure and preserved ejection fraction (HFpEF) and that this would be related to pulmonary vascular hemodynamic abnormalities. BackgroundGross evidence of lung congestion on physical examination, laboratory tests, and radiography is typically absent among compensated ambulatory patients with HFpEF. However, pulmonary gas transfer abnormalities are commonly observed and associated with poor outcomes. MethodsPatients referred for invasive hemodynamic exercise testing who had undergone chest computed tomography imaging within 1 month were identified (N = 137). A novel artificial intelligence QCT algorithm was used to measure pulmonary fluid content. ResultsCompared with control subjects with noncardiac dyspnea, patients with HFpEF displayed increased mean lung density (–758 HU [–793, –709 HU] vs –787 HU [–828, –747 HU]; P = 0.002) and a higher ratio of extravascular lung water to total lung volume (EVLWV/TLV) (1.25 [0.80, 1.76] vs 0.66 [0.01, 1.03]; P < 0.0001) by QCT imaging, indicating greater lung congestion. EVLWV/TLV was directly correlated with pulmonary vascular pressures at rest, with stronger correlations observed during exercise. Patients with increasing tertiles of EVLWV/TLV demonstrated higher mean pulmonary artery pressures at rest (34 ± 11 mm Hg vs 39 ± 14 mm Hg vs 45 ± 17 mm Hg; P = 0.0003) and during exercise (55 ± 17 mm Hg vs 59 ± 17 mm Hg vs 69 ± 22 mm Hg; P = 0.0003). ConclusionsQCT imaging identifies subclinical lung congestion in HFpEF that is not clinically apparent but is related to abnormalities in pulmonary vascular hemodynamics. These data provide new insight into the long-term effects of altered hemodynamics on pulmonary structure and function in HFpEF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.