Abstract

The nerve gas sarin is a potent cholinergic agent, and exposure to high doses may cause neurotoxicity and death. Subclinical exposures to sarin have been postulated to contribute to the Gulf War syndrome; however, the biological effects of subclinical exposure are largely unknown. In this communication, evidence shows that subclinical doses (0.2 and 0.4 mg/m 3) of sarin administered by inhalation to F344 rats for 1 h/day for 5 or 10 days inhibited the anti-sheep red blood cell antibody-forming cell response of spleen cells without affecting the distribution of lymphocyte subpopulations in the spleen. Moreover, sarin suppressed T cell responses, including the concanavalin A (Con A) and the anti-αβ-T cell receptor (TCR) antibody-induced T cell proliferation and the rise in the intracellular calcium following TCR ligation. These concentrations of sarin altered regional but not total brain acetylcholinesterase activity. Interestingly, serum corticosterone levels of the sarin-treated animals were dramatically lower than the control animals, indicating that sarin-induced immunosuppression did not result from the activation of the hypothalamus—pituitary–adrenal (HPA) axis. Pretreatment of animals with the ganglionic blocker chlorisondamine abrogated the inhibitory effects of sarin on spleen cell proliferation in response to Con A and anti-TCR antibodies. These results suggest that the effects of sarin on T cell responsiveness are mediated via the autonomic nervous system and are independent of the HPA axis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call