Abstract

PurposeIn premenopausal women, amenorrhea contributes to endothelial dysfunction. It is unknown whether this vascular functional change is associated with vascular structural change. MethodsThis study examined regional and systemic vascular structure and function to gain insight into subclinical atherosclerotic risk in 10 amenorrheic athletes, 18 eumenorrheic athletes, and 15 recreationally active controls. Brachial flow-mediated dilation (FMD) and low flow mediated constriction (L-FMC) were used to measure global endothelial function. Carotid-femoral pulse wave velocity (PWV) was used to measure aortic stiffness. Doppler-ultrasound of the superficial femoral artery (SFA) was used to assess intima-media thickness (IMT) and vessel diameter as indicators of vascular remodeling. ResultsAmenorrheic athletes had significantly lower brachial FMD adjusted for shear stimulus (6.9 ± 1.3%) compared with eumenorrheic athletes (11.0 ± 1.0%) and controls (11.0 ± 1.1%, p = 0.05). Brachial L-FMC (−1.8 ± 4.3%) and aortic PWV (5.0 ± 1.0 m/s) of amenorrheic athletes were similar to those of eumenorrheic athletes (L-FMC, −1.6 ± 4.6%; PWV, 4.6 ± 0.5 m/s) and controls (L-FMC, −1.5 ± 2.8%, p = 0.98; PWV, 5.4 ± 0.7 m/s, p = 0.15). SFA diameters were similar in amenorrheic athletes (5.7 ± 0.7 mm) and eumenorrheic athletes (5.7 ± 0.7 mm), but amenorrheic athletes had larger SFA diameters compared with controls (5.1 ± 0.6 mm, p = 0.04). In amenorrheic athletes, SFA IMT (0.31 ± 0.03 mm) was similar to that of eumenorrheic athletes (0.35 ± 0.07 mm) but significantly thinner compared to that of controls (0.38 ± 0.06, p = 0.01). ConclusionVascular dysfunction in female amenorrheic athletes is not systemic. Parenthetically, amenorrhea may not prevent favorable peripheral vascular structural adaptations to habitual exercise training.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.