Abstract

Ellagic acid (EA) is present in a variety of foods such as grapes, strawberries, raspberries, and nuts. It is a dietary plant phenol that has been shown to inhibit oxidative stress and chemical carcinogenesis. Although several studies have examined the protective mechanisms of dietary EA including the induction of detoxifying enzymes, regulation of cell cycle, chelation of nickel, and prevention of DNA methylation, none have addressed the role of EA in immunological surveillance. This study investigates the status of immune function in B6C3F1 mice exposed continuously to EA in drinking water at 0.5, 1.0, or 2.0 mg/kg/day for 28 days. Although this range of exposure is above the estimated human daily intake (≈940 µg/day for 70 kg person or 13.4 µg/kg/day), these levels would not be unreasonable if EA were used as a dietary supplement or as a chemotherapeutic agent. Previous reports have demonstrated the anticarcinogenic effects of EA at levels 10‐ to 250‐fold greater than those applied in this study. Immunological parameters assessed included natural killer (NK) cell activity, cytotoxic T lymphocyte (CTL) activity, IgM antibody plaque forming cell (PFC) response, thymus, spleen, kidney, and liver mass, and total cellularity for the thymus and spleen. Subchronic exposure to EA for 28 days in drinking water caused significant suppression of specific IgM antibody responses in the 2.0 mg/kg EA treatment group and suppressed cytotoxic T‐cell function in the 0.5 and 1.0 mg/kg EA treatment groups. All other immunological parameters were within normal ranges. Kidney and liver mass were not altered after treatment with EA. The results from this study indicate that EA suppressed both IgM antibody responses and CTLs. These observations suggest important implications on human health should EA be prescribed as a chemotherapeutic agent or a preventative dietary supplement for cancer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.