Abstract
Objective: In order to study the threshold concentrations of isocyanates (IC) for induction of lung disorders, constrictive responses of tracheal smooth muscles to acetylcholine (ACH) in guinea pigs with and without diisocyanate [toluene diisocyanate (TDI), hexamethylene diisocyanate (HDI) and diphenylmethane diisocyanate (MDI)] exposure were investigated. Methods: An IC-induced increase in smooth muscle responsiveness was studied by measuring cumulative ACH dose responses (10<sup>–10</sup> to 10<sup>–4</sup> M ACH). Basal ACH dose-response curves, measured twice in intervals of 1 h using tracheal preparations of 11 guinea pigs previously not exposed to IC, were reproducible. Results: Subchronic in vivo exposures to TDI, HDI, and MDI atmospheres of 10 and 20 parts per billion (ppb) on 5 consecutive days led to significantly (p < 0.05) increased ACH responsiveness of tracheal smooth muscle, whereas concentrations of 2.5 and 5 ppb were not effective. Exposure to HDI atmospheres of 10 ppb for 1, 2, 4, or 8 weeks resulted in a time-dependent increase in ACH responses (p < 0.05) of guinea pig tracheal smooth muscle. Increased tracheal muscle responses to ACH were transient since tracheal preparations from animals exposed to 10 and 20 ppb MDI for 4 weeks and with an exposure-free interval of 8 weeks before preparation did not show enlarged ACH responses, which were present in preparations at the end of the exposure period (p < 0.05). Exposure to low IC concentrations as present in workplaces cause increased ACH responsiveness of guinea pig tracheal smooth muscle. The increased responsiveness of the airways seems to be largely reversible, since normal responses were found after 8 weeks of IC avoidance. Conclusion: Reversibility of IC-induced airway hyperresponsiveness is of great occupational and preventive medical importance. Workers with acquired airway hyperresponsiveness might escape lung damage if the changes are detected in an early stage before alterations in lung function are in a chronic stage.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.