Abstract

Tributyltin (TBT) chloride is an endocrine disrupting chemical associated with reproductive complications. Studies have shown that TBT targets the reproductive tract, impairing ovarian folliculogenesis, and uterine morphophysiology. In this investigation, we assessed whether subchronic and low dose of TBT exposure results in abnormal ovarian follicular reserve and other irregularities in female mice. TBT was administered to female mice (500 ng/kg/day for 12 days via gavage), and reproductive tract morphophysiology was assessed. We further assessed reproductive tract inflammation and oxidative stress. Improper functioning of the reproductive tract in TBT mice was observed. Specifically, irregular estrous cyclicity and abnormal ovarian morphology coupled with reduction in primordial and primary follicle numbers was observed, suggesting ovarian reserve depletion. In addition, improper follicular development and a reduction in antral follicles, corpora lutea, and total healthy ovarian follicles together with an increase in cystic follicles were apparent. Evidence of uterine atrophy, reduction in endometrial gland number, and inflammation and oxidative stress were seen in TBT mice. Further, strong negative correlations were observed between testosterone levels and primordial, primary, and total healthy ovarian follicles. Thus, these data suggest that the subchronic and low dose of TBT exposure impaired ovarian follicular reserve, uterine gland number, and other reproductive features in female mice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.