Abstract

Anterior cruciate ligament (ACL) tears are a common sports-related knee injury that increases the risk of developing post-traumatic osteoarthritis (OA). During OA progression bone microarchitecture changes in the affected knee, however, little is known about bone microarchitecture in knees with early stage OA. The purpose of this study is to investigate in a cohort of females predisposed to develop OA how bone microarchitecture in ACL reconstructed knees differs from uninjured contralateral knees as well as healthy control knees and how this relates to early changes in OA. Bone microarchitecture was directly assessed in ACL reconstructed knees of injured female participants (n=15) with a median age of 25.4years (age range: 22.5-28.5) and compared to their uninjured contralateral knees, as well as to a healthy age-matched female control sample (n=14) with a median age of 25.2years (age range: 22.2-27.1). ACL reconstructed knees had lower trabecular bone mineral density (compared to contralateral: -7.7% to -10.4%, p<0.05; control knees: -7.1% to -13.9%, p<0.05) and altered trabecular bone microarchitecture in the medial femur compared to contralateral and control knees. The subchondral bone plate in the lateral femur was thicker in ACL reconstructed knees compared to contralateral (29.6%, p=0.009) and control knees (47.9% to 53.7%, p<0.05). Contralateral knees did not differ from control knees. Loss of trabecular bone and increased subchondral bone plate thickness in the ACL-reconstructed knees are consistent with changes associated with OA progression. Most differences in bone microarchitecture were found in the femur, with few differences in the tibia. The bone microarchitecture of contralateral knees did not differ from control knees in our participants, suggesting the potential to use them as control references in future longitudinal studies.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call