Abstract

Viral replication requires host cell macromolecules and energy, although host cells can alter their protein expression to restrict viral replication. To study the host cell response to human cytomegalovirus (HCMV) infection, a stable isotope labeling by amino acids in cell culture (SILAC)-based subcellular quantitative proteomic study of HCMV-infected human embryo lung fibroblast (HEL) cells was performed, and a total of 247 host proteins were identified as differentially regulated by HCMV. Western blotting and immunofluorescence confocal microscopy were performed to validate the data sets. Gene Ontology analysis indicated that cellular processes involving the metabolism, localization and immune system were regulated as a result of HCMV infection. Functional analysis of selected regulated proteins revealed that knockdown of HNRPD, PHB2 and UB2V2 can increase HCMV replication, while knockdown of A4 and KSRP resulted in decreased HCMV replication. Our study may improve our understanding of the dynamic interactions between HCMV and its host and provide multiple potential targets for anti-HCMV agent research.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.