Abstract

Parkinson's disease and other synucleinopathies are characterized by the presence of intra-neuronal protein aggregates enriched in the presynaptic protein α-synuclein. α-synuclein is considered an intrinsically disordered 14kDa monomer, and although poorly understood, its transition to higher-order multimeric species may play central roles in healthy neurons and during Parkinson's disease pathogenesis. In this study, we demonstrate that α-synuclein exists as defined, subcellular-specific species that change characteristics in response to oxidative stress in neuroblastoma cells and in response to Parkinson's disease pathogenesis in human cerebellum and frontal cortex. We further show that the phosphorylation patterns of different α-synuclein species are subcellular specific and dependent on the oxidative environment. Using high-performance liquid chromatography and mass spectrometry, we identify a Parkinson's disease enriched, cytosolic ~36-kDa α-synuclein species which can be recapitulated in Parkinson's disease model neuroblastoma cells. The characterization of subcellular-specific α-synuclein features in neurodegeneration will allow for the identification of neurotoxic α-synuclein species, which represent prime targets to reduce α-synuclein pathogenicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.