Abstract

Deep cerebellar dentate nuclei are in a key position to control motor planning as a result of an integration of cerebropontine inputs and hemispheric Purkinje neurons signals, and their influence through synaptic outputs onto extracerebellar hubs. GABAergic dentate neurons exhibit broader action potentials and slower afterhyperpolarization than non-GABAergic (presumably glutamatergic) neurons. Specific potassium channels may be involved in these distinct firing profiles, particularly, Kv3.1 and Kv3.3 subunits which rapidly activate at relatively positive potentials to support the generation of fast action potentials. To investigate the subcellular localization of Kv3.1b and Kv3.3 in GAD− and GAD+ dentate neurons of glutamic acid decarboxylase 67–green fluorescent protein (GAD67-GFP) knock-in mice a preembedding immunocytochemical method for electron microscopy was used. Kv3.1b and Kv3.3 were in membranes of cell somata, dendrites, axons and synaptic terminals of both GAD− and GAD+ dentate neurons. The vast majority of GAD− somatodendritic membrane segments domains labeled for Kv3.1b and Kv3.3 (96.1% and 84.7%, respectively) whereas 56.2% and 69.8% of GAD− axonal membrane segments were immunopositive for these subunits. Furthermore, density of Kv3.1b immunoparticles was much higher in GAD− somatodendritic than axonal domains. As to GAD+ neurons, only 70.6% and 50% of somatodendritic membrane segments, and 53.3% and 59.5% of axonal membranes exhibited Kv3.1b and Kv3.3 labeling, respectively. In contrast to GAD− cells, GAD+ cells exhibited a higher density labeling for both Kv3 subunits at their axonal than at their somatodendritic membranes. Taken together, Kv3.1b and Kv3.3 potassium subunits are expressed in both GAD− and GAD+ cells, albeit at different densities and distribution. They likely contribute to the distinct biophysical properties of both GAD− and GAD+ neurons in the dentate nucleus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.