Abstract

The spleen in Gaucher's disease contains relatively large quantities of a heat-stable activator of the glucocerebrosidase of normal human tissues (Ho, M. W., and O'Brien, J. S. (1971) Proc. Nat. Acad. Sci. USA 68, 2810–2813) that has been shown to be an 11,000 molecular weight acidic glycoprotein (Peters, S. P., et al. (1977) J. Biol. Chem. 252, 563–573). In an effort to determine the subcellular location of the activator, a mannitol-sucrose homogenate of fresh, unfrozen spleen obtained from a 26-year-old patient with adult, nonneuropathic (Type 1) form of Gaucher's disease was subjected to subcellular fractionation. The tissue used in these experiments exhibited a β-glucocerebrosidase deficiency (11% of control tissue characteristic of Gaucher's disease. Mitochondrial and lysosomal fractions obtained by centrifugation of the spleen homogenate at 6900 and and 20,000 g, respectively, contained greater than 80% of the recovered acid phosphatase and heat-stable glucocerebrosidase activator activities. In addition, 60% of the residual glucocerebrosidase activity was recovered in the mitochondrial and lysosomal fractions. The lysosomal and mitochondrial fractions were subjected to equilibrium sucrose density gradient centrifugation. Analysis of the sucrose gradient of the crude mitochondrial fraction demonstrated the mitochondrial marker enzyme (cytochrome oxidase) banding with a specific gravity of 1.19 g/ml, whereas the heat-stable activating factor banded in an acid phosphatase-rich fraction having a specific gravity of 1.12 g/ml. Sucrose gradient analysis of the crude lysosomal fraction obtained from differential centrifugation indicated the activating factor banding with a specific gravity of 1.12 g/ml. Coincident with the activating factor was glucocerebrosidase and acid phosphatase activity. Electron microscopic examination of fractions from each of the sucrose density gradients demonstrated that the glucocerebrosidase activating factor was located in the same acid phosphatase-rich fractions that contained the characteristic Gaucher deposits. Furthermore, when Gaucher deposits were isolated and purified independently by a sucrose gradient procedure, they were found to contain high concentrations of the heat-stable glucocerebrosidase activator. The specific activity of the glucocerebrosidase activating factor was approximately 15-fold greater in the extensively purified Gaucher deposits than in the crude extract of Gaucher spleen from which the deposits were isolated. These observations indicate that the heat-stable activator is associated with the storage deposits contained in lysosomes of the Gaucher cell.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.