Abstract

We have used isopycnic density gradient centrifugation to study the distribution of several rat liver microsomal enzymes of cholesterol synthesis and metabolism. All of the enzymes assayed in the pathway from lanosterol to cholesterol (lanosterol 14-demethylase, steroid 14-reductase, steroid 8-isomerase, cytochrome P-450, and cytochrome b5) are distributed in both smooth (SER) and rough endoplasmic reticulum (RER). The major regulatory enzyme in the pathway, hydroxymethylglutaryl-CoA reductase, also was found in both smooth and rough fractions, but we did not observe any associated with either plasma membrane or golgi. Since cholesterol can only be synthesized in the presence of these requisite enzymes, we conclude that the intracellular site of cholesterol biosynthesis is the endoplasmic reticulum. This is consistent with the long-held hypothesis. When the overall pathway was assayed by the conversion of mevalonic acid to non-saponifiable lipids (including cholesterol), the pattern of distribution obtained in density gradients verified its general endoplasmic reticulum localization. The enzyme acyl-CoA-cholesterol acyltransferase which removes free cholesterol from the membrane by esterification, was found only in the rough fraction of endoplasmic reticulum. In addition, when the RER was degranulated by the addition of EDTA, the activity of acyl-CoA-cholesterol acyltransferase not only shifted to the density of SER but was stimulated approximately 3-fold. The localization of these enzymes coupled with the stimulatory effect of degranulation on acyl-CoA-cholesterol acyltransferase activity has led us to speculate that the accumulation of free cholesterol in the RER membrane might be a driving factor in the conversion of RER to SER.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.