Abstract

BackgroundReuptake of synaptic norepinephrine (NE) via the antidepressant-sensitive NE transporter (NET) supports efficient noradrenergic signaling and presynaptic NE homeostasis. Limited, and somewhat contradictory, information currently describes the axonal transport and localization of NET in neurons.ResultsWe elucidate NET localization in brain and superior cervical ganglion (SCG) neurons, aided by a new NET monoclonal antibody, subcellular immunoisolation techniques and quantitative immunofluorescence approaches. We present evidence that axonal NET extensively colocalizes with syntaxin 1A, and to a limited degree with SCAMP2 and synaptophysin. Intracellular NET in SCG axons and boutons also quantitatively segregates from the vesicular monoamine transporter 2 (VMAT2), findings corroborated by organelle isolation studies. At the surface of SCG boutons, NET resides in both lipid raft and non-lipid raft subdomains and colocalizes with syntaxin 1A.ConclusionOur findings support the hypothesis that SCG NET is segregated prior to transport from the cell body from proteins comprising large dense core vesicles. Once localized to presynaptic boutons, NET does not recycle via VMAT2-positive, small dense core vesicles. Finally, once NET reaches presynaptic plasma membranes, the transporter localizes to syntaxin 1A-rich plasma membrane domains, with a portion found in cholera toxin-demarcated lipid rafts. Our findings indicate that activity-dependent insertion of NET into the SCG plasma membrane derives from vesicles distinct from those that deliver NE. Moreover, NET is localized in presynaptic membranes in a manner that can take advantage of regulatory processes targeting lipid raft subdomains.

Highlights

  • Reuptake of synaptic norepinephrine (NE) via the antidepressant-sensitive NE transporter (NET) supports efficient noradrenergic signaling and presynaptic NE homeostasis

  • We selected a sequence in mouse NET (mNET) based on predicted antigenicity, and lack of conservation with other monoamine transporters such as the serotonin transporter (SERT) and dopamine transporter (DAT)

  • Subcellular distribution of neuronal NET in relation to vesicular monoamine transporter 2 (VMAT2) in mouse brain Having validated the utility of NET-05 antibody for detection of mouse brain NET in multiple assays, we examined the hypothesis that NET is sorted to dense core vesicles that harbor VMAT2

Read more

Summary

Introduction

Reuptake of synaptic norepinephrine (NE) via the antidepressant-sensitive NE transporter (NET) supports efficient noradrenergic signaling and presynaptic NE homeostasis. The powerful and widespread actions of NE include the regulation of metabolism, cardiovascular function, memory, emotion, attention, arousal, and appetite [4,5,6,7]. These actions are supported by the plasmalemmal NE transporter (NET) [8,9] an integral membrane protein that binds and clears NE following release [10,11,12]. The importance of NET for normative physiology and behavior has been amply confirmed with studies of NET knock out (KO) mice that display altered seizure susceptibility and opiate/cocaine sensitivities, as well as maladaptive responses to social and cardiovascular stressors [26,27,28,29,30,31,32,33]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call