Abstract

In vivo magnetic resonance (MR) spectra are typically obtained from voxels whose spatial dimensions far exceed those of the cells they contain. This study was designed to evaluate the potential of localized MR spectroscopy to investigate subcellular phenomena. Using a high magnetic field and a home-built microscopy probe with large gradient field strengths, we achieved voxel sizes of (180 μm) 3. In the large oocytes of the frog Xenopus laevis, this was small enough to allow the recording of the first compartment-selective in vivo MR spectra from the animal and vegetal cytoplasm as well as the nucleus. The two cytoplasmic regions differed in their lipid contents and NMR lineshape characteristics—differences that are not detectable with whole-cell NMR techniques. In the nucleus, the signal appeared to be dominated by water, whereas other contributions were negligible. We also used localized spectroscopy to monitor the uptake of diminazene acturate, an antitrypanosomal agent, into compartments of a single living oocyte. The resulting spectra from the nucleus and cytoplasm revealed different uptake kinetics for the two components of the drug and demonstrate that MR technology is on the verge of becoming a tool for cell biology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.