Abstract
Cholesterol-containing molecules or nanoparticles play a significant role in achieving favorable plasma membrane imaging and efficient cellular uptake of drugs by the excellent membrane anchoring capability of the cholesterol moiety. By linking cholesterol to a water-soluble component (such as poly(ethylene glycol), PEG), the resulting cholesterol-PEG conjugate can form micelles in aqueous solution through self-assembly, and such a micellar structure represents an important drug delivery vehicle in which hydrophobic drugs can be encapsulated. However, the understanding of the subcellular fate and cytotoxicity of cholesterol-PEG conjugates themselves remains elusive. Herein, by using cholesterol-PEG2000-fluorescein isothiocyanate (Chol-PEG-FITC) as a model system, we found that the Chol-PEG-FITC molecules could attach to the plasma membranes of mammalian cells within 10 min and such a firm membrane attachment could last at least 1 h, displaying excellent plasma membrane staining performance that surpassed that of commonly used commercial membrane dyes such as DiD and CellMask. Besides, we systematically studied the endocytosis pathway and intracellular distribution of Chol-PEG-FITC and found that the cell surface adsorption and endocytosis processes of Chol-PEG-FITC molecules were lipid-raft-dependent. After internalization, the Chol-PEG-FITC molecules gradually reached many organelles with membrane structures. At 5 h, they were mainly distributed in lysosomes and the Golgi apparatus, with some in the endoplasmic reticulum (ER) and very few in the mitochondrion. At 12 h, the Chol-PEG-FITC molecules mostly aggregated in the Golgi apparatus and ER close to the nucleus. Finally, we demonstrated that Chol-PEG-FITC was toxic to mammalian cells only at concentrations above 50 μM. In summary, Chol-PEG-FITC can be a promising plasma membrane imaging reagent to avoid the fast cellular internalization and quick membrane detachment problems faced by commercial membrane dyes. We believe that the investigation of the dynamic subcellular fate of Chol-PEG-FITC can provide important knowledge to facilitate the use of cholesterol-PEG conjugates in fields such as cell surface engineering and drug delivery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.