Abstract
Stress responses in plants imply spatio-temporal changes in enzymes and metabolites, including subcellular compartment-specific re-allocation processes triggered by sudden changes in environmental parameters. To investigate interactions of primary metabolism with abiotic stress, the gin2-1 mutant, defective in the sugar sensor hexokinase 1 (HXK1) was compared with its wildtype Landsberg erecta (Ler) based on time resolved, compartment-specific metabolome and proteome data obtained over a full diurnal cycle. The high light sensitive gin2-1 mutant was substantially delayed in subcellular re-distribution of metabolites upon stress, and this correlated with a massive reduction in proteins belonging to the ATP producing electron transport chain under high light, while fewer changes occurred in the cold. In the wildtype, compounds specifically protecting individual compartments could be identified, e.g., maltose and raffinose in plastids, myo-inositol in mitochondria, but gin2-1 failed to recruit these substances to the respective compartments, or responded only slowly to high irradiance. No such delay was obtained in the cold. At the whole cell level, concentrations of the amino acids, glycine and serine, provided strong evidence for an important role of the photorespiratory pathway during stress exposure, and different subcellular allocation of serine may contribute to the slow growth of the gin2-1 mutant under high irradiance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.