Abstract

The photodynamic drug, hypericin, is studied in fetal rat neurons using fluorescence microscopy. Hypericin has an extremely high affinity for the cell membrane and is found to a smaller extent in the nucleus. Fluorescent excitation of hypericin is shown to cause irreversible damage to the cell membranes of living neurons. Fixed cells were used to make ultrafast time-resolved measurements to avoid the deleterious effects of long-term exposure to intense light and room temperatures. To our knowledge, these are the first ultrafast time-resolved measurements of the fluorescence lifetime of hypericin in a subcellular environment. Nonexponential fluorescence decay is observed in hypericin in the neurons. This nonexponential decay is discussed in terms of other examples where nonexponential decay is induced in hypericin upon its binding to biomolecules. The nonradiative processes giving rise to the nonexponential hypericin decay are attributed to excited-state electron transfer, excited-state proton transfer or both.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call