Abstract

Drosophila and vertebrate elav/Hu genes are involved in the development and the maintenance of the nervous system. They all encode proteins that contain three RNA recognition motifs (RRM) and are thus expected to play a role in RNA metabolism. Drosophila ELAV and RBP9 proteins were reported to be exclusively distributed in nuclei of neurons, whereas known human Hu proteins display a bipartite nuclear and cytoplasmic distribution. We have previously isolated a member of this family in Xenopus, Xel-1, that is exclusively expressed in neural tissues from the early tailbud stage onward. In the present study, we report on the subcellular distribution of XEL-1 protein using myc epitope tagging, a strategy allowing the study of a single member of the ELAV/Hu family. We show that the subcellular distribution of exogenous XEL-1 protein in neural tissues depends on developmental stages. In the neural tube at the neurula stage, where endogenous Xel-1 is not expressed, exogenous tagged XEL-1 protein is localized in both the nucleus and the cytoplasm. At the tailbud stage, where endogenous Xel-1 is expressed, exogenous tagged XEL-1 protein is localized essentially in the cytoplasm of neural tube cells. In contrast, exogenous Drosophila ELAV protein localizes to the nucleus at all stages in Xenopus embryos. The variability in the subcellular localization of ELAV/Hu proteins in different species may have functional implications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call