Abstract

Semiconductor II-VI quantum dots (QDs), as high-performance fluorescent biological probes, have garnered significant attention due to their superior optical properties. To enable QDs for wide-ranging bioapplications, concerns about their in vitro behavior need to be fully addressed. Herein, for the first time, cellular behaviors of aqueous synthesized-QDs (aqQDs), whose maximum emission wavelength (λ emission) covers the visible to near-infrared spectral window, are systematically investigated. Our results demonstrate that three different sized aqQDs feature distinct cellular distributions, i.e. aqQD530 (aqQDs whose λ emission is 530 nm) and aqQD620 (aqQDs whose λ emission is 620 nm) mainly distribute in the cytoplasm and nucleus, while aqQD730 (aqQDs whose λ emission is 730 nm) mainly accumulates in the cytoplasm. Most significantly, the phenomenon that cellular self-repair ability is dependent on diameters of aqQDs is revealed for the first time. In particular, small-sized QDs (e.g. aqQD530 and aqQD620) severely deteriorate cellular self-repair ability, leading to an irreversible decrease in cell viability. In striking contrast, large-sized QDs (e.g. aqQD730) have little effect on cellular self-repair ability, and the cell viability is restored after removal of aqQD730 from the culture medium. Our results provide invaluable information for QD-relevant biosafety analysis, as well as suggest available guidance for the design of biocompatible QDs for wide utilization in biological and biomedical studies.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.