Abstract

The generation of the photosensitizer protoporphyrin IX (PpIX) in cells can be induced by externally applied 5-aminolevulinic acid (ALA), with that bypassing the feedback control mechanism. The aim of the present study was to investigate the onset of destructive changes in living cocultivated WI38 and VA13-transformed WI38 human fibroblasts following ALA incubation, PpIX production and subsequent irradiation by white halogen light with a dose of 2.2 kJ/m2. Specific fluorescence markers such as 3,3'-dihexyloxacarbocyanine iodide for endoplasmic reticulum (ER) staining and dihydrorhodamine for intact mitochondria mapping combined with a low light imaging system are a versatile and sensitive tool to examine the photoinduced destruction of organelles in living cells, while artifacts are minimized. Mitochondria as primary targets of PpIX undergo a condensation under irradiation and are finally destroyed. Photodynamic treatment induces further a significant decomposition of ER, although PpIX localization could not be determined. Initial destabilization and vesiculation of ER is followed by a porous network with large cisternae (indicating the breakdown of cell integrity and cell/nucleus membrane damage). Normal cocultivated lung fibroblasts showed a delay in destruction compared to the transformed WI38-VA13 cells. The observed decomposition pattern resembles the morphological pattern of apoptosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.