Abstract
The detection of object categories with large variations in appearance is a fundamental problem in computer vision. The appearance of object categories can change due to intra-class variations, background clutter, and changes in viewpoint and illumination. For object categories with large appearance changes, some kind of sub-categorization based approach is necessary. This paper proposes a sub-category optimization approach that automatically divides an object category into an appropriate number of sub-categories based on appearance variations. Instead of using predefined intra-category sub-categorization based on domain knowledge or validation datasets, we divide the sample space by unsupervised clustering using discriminative image features. We then use a cluster performance analysis (CPA) algorithm to verify the performance of the unsupervised approach. The CPA algorithm uses two performance metrics to determine the optimal number of sub-categories per object category. Furthermore, we employ the optimal sub-category representation as the basis and a supervised multi-category detection system with χ2 merging kernel function to efficiently detect and localize object categories within an image. Extensive experimental results are shown using a standard and the authors' own databases. The comparison results reveal that our approach outperforms the state-of-the-art methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.