Abstract

One of the most efficient methods to reduce the dropping and blocking probabilities of the secondary users (SUs) in cognitive radio networks is channel sub-banding strategy. This means that when all the channels are occupied by the primary and secondary users, then the SUs' channels can be divided into two sub-bands, and two SUs can use a sub-band, simultaneously. In this paper, we propose an opportunistic spectrum sharing system in cognitive radio networks in which, the channel sub-banding strategy is implemented. Furthermore, we describe the problem of channel sub-banding considering the spectrum sensing errors such as false alarm and miss-detection events for both initial and on-going SUs' calls. Due to unreliable spectrum sensing by the SUs and subsequently possible interference with the primary users, we assume that both primary and secondary users may lose the channel due to the collision. The proposed model is analyzed by a two-dimensional Markov chain model and for performance evaluation, metrics such as blocking and dropping probabilities and channel utilization are derived. Numerical and simulation results show the accuracy of the proposed model which can be used in the evaluation of future cognitive radio networks' performance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call