Abstract

We call a subalgebra $U$ of a Lie algebra $L$ a $CAP$-subalgebra of $L$ if for any chief factor $H/K$ of $L$, we have $H \cap U = K \cap U$ or $H+U = K+U$. In this paper we investigate some properties of such subalgebras and obtain some characterizations for a finite-dimensional Lie algebra $L$ to be solvable under the assumption that some of its maximal subalgebras or $2$-maximal subalgebras be $CAP$-subalgebras.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.