Abstract

SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10-17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.

Highlights

  • The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread resulting in a major pandemic [1]

  • SARS-CoV-2 infection presents a wide spectrum of clinical manifestations ranging from asymptomatic to fatal respiratory failure

  • To know the requirement of CD8+ T cells for viral control after the establishment of infection, we examined the effect of CD8+ cell depletion by monoclonal anti-CD8 antibody administration in the subacute phase on SARS-CoV-2 replication in cynomolgus macaques

Read more

Summary

Introduction

The coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly spread resulting in a major pandemic [1]. SARS-CoV-2 transmission occurs via the respiratory route, and the average incubation period from infection to symptom onset has been estimated to be 5 days [2]. SARS-CoV-2 infection presents a wide spectrum of clinical manifestations ranging from asymptomatic to fatal respiratory failure [3]. Multiple cofounding factors such as age and underlying diseases are associated with COVID-19 severity [4,5,6,7,8]. The exact determinants for failure in viral control and/or fatal disease progression have not been elucidated fully

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call