Abstract

Sarin was used as a chemical weapon due to its high neurotoxicity and mortality. Subacute sarin induced cognitive and behavioral disorder. However, the underlying mechanism is still unclear. Here we offered a multi-omic approach for the analysis of altered metabolites, lipids, and proteins to explore the neurotoxicity of subacute sarin. Guinea pigs were administered between the shoulder blades 16.8 μg/kg of sarin in a volume of 1.0 ml/kg body weight by subcutaneous injection once daily for 14 days. At the end of the final injection, guinea pigs were sacrificed, and striatum were dissected for analysis. A total of 138 different metabolites were identified in the metabolome analysis. Lipids and lipid-like molecules is the largest group (38.41%). For lipidomic analysis, a total of 216 lipids were identified. In proteomic study, over 4300 proteins were identified and quantified. By integrating these enriched components, we demonstrated that the joint pathways disturbed by subacute sarin mainly involving lipid, purine and pyrimidine metabolism in guinea pig striatum. Overall, this study highlights the powerfulness of omics platforms to deepen the understanding of nerve agents caused neurotoxicity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.