Abstract

Dimethoate commonly used as environmental ares for control pests which is widely used throughout in the world and itcaused toxic effects on nontarget organisms especially mammalian. Ferulic acid is known to protective compound generally used in toxicology studies. Thus, inthis study, we investigatedthe protective role of ferulic acid against the possible toxic effects of low and high doses of dimethoate. Male rats were randomly divided into six groups: control; ferulic acid; low and high dose dimethoate; both ferulic acid and low dose dimethoate; both ferulic acid and high dose dimethoate. The dimethoate treatment to rats caused oxidative stress in liver and kidney tissue via increased malondialdehyde levels and changes in superoxide dismutase, catalase, glutathione peroxidase and glutathione-S-transferase activities. All dose dimethoate treatments also caused histopathological alterations and differences in activities in alanine aminotransferase, aspartate aminotransferase, total protein, albumin, lactate dehydrogenase, total cholesterol, urea, uric acid, and creatinine levels. The histopathological results verified the biochemical findings for both liver and kidney. Co-administration of ferulic acid with dimethoate improved antioxidative parameters and eased some biochemical parameters mentioned above. Ferulic acid was also seen to play a beneficial role in the histopathological effects of dimethoate for both liver and kidney.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.