Abstract

We demonstrate a compact, self-starting mode-locked thulium-doped fiber laser based on nonlinear polarization evolution (NPE), with a fundamental repetition rate of ∼344MHz and a pulse duration of ∼160fs. The generated pulses centered at ∼1975nm have a maximum output power of ∼560mW, corresponding to a pulse energy of ∼1.63nJ. To the best of our knowledge, the achieved repetition rate represents the highest value of fundamentally NPE mode-locked fiber lasers at ∼2µm, while the average output power is also higher than the previously reported 2 µm ultrafast single-mode fiber oscillators. The timing jitter in the integrated range [5 kHz, 10 MHz] and the integrated relative intensity noise in the range [10 Hz, 10 MHz] reach ∼35fs and ∼0.009%, respectively. Our high-performance laser is an ideal candidate for various applications, including mid-infrared frequency metrology and high-speed optical sampling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.