Abstract
The transcriptional coactivator Sub1 has been implicated in several aspects of mRNA metabolism in yeast, such as activation of transcription, termination, and 3'-end formation. Here, we present evidence that Sub1 plays a significant role in controlling phosphorylation of the RNA polymerase II large subunit C-terminal domain (CTD). We show that SUB1 genetically interacts with the genes encoding all four known CTD kinases, SRB10, KIN28, BUR1, and CTK1, suggesting that Sub1 acts to influence CTD phosphorylation at more than one step of the transcription cycle. To address this directly, we first used in vitro kinase assays, and we show that, on the one hand, SUB1 deletion increased CTD phosphorylation by Kin28, Bur1, and Ctk1 but, on the other, it decreased CTD phosphorylation by Srb10. Second, chromatin immunoprecipitation assays revealed that SUB1 deletion decreased Srb10 chromatin association on the inducible GAL1 gene but increased Kin28 and Ctk1 chromatin association on actively transcribed genes. Taken together, our data point to multiple roles for Sub1 in the regulation of CTD phosphorylation throughout the transcription cycle.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.