Abstract
This paper is concerned with an efficient continuous variable optimization method for determining an optimal configuration of passive and active joints of a binary manipulator when it operates within a desired sub-workspace. When joints are passive, their states, either stretched or contracted, are also determined by the developed method. Manipulator operations in a sub-workspace can avoid unnecessary actuations, resulting in energy saving. A technique to increase the sub-workspace concentration degree for a given maximum number of allowable active joints is also suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.