Abstract

It is well known that radially polarized beam could produce an ultra-long longitudinally polarized focus, referred to as "optical needle". In this work, we reveal that the counterpart transversely polarized optical needle (~5.83λ) with exceptionally suppressed sidelobes (9.9% of the maximum of the principal lobe) can be generated by tightly focusing a hybridly polarized beam through a multibelt binary phase filter. A universal analytical model is built up for investigating the depth, uniformity and polarization properties of the needle. We find that there is a trade-off between needle length and intensity uniformity, and the main lobe keeps almost transverse polarization at each observation plane. Such a nondiffraction transversely polarized optical needle has potential applications in ultrahigh density magnetic storage as well as atomic trap and switches.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call