Abstract

BackgroundCobalt ions from some orthopaedic implants induce a dose-dependent cytotoxic and pro-inflammatory response. Recent studies show that sub-toxic levels of cobalt influence actin organisation regulating fibroblasts and macrophages behaviour. However little is known about the influence of sub-toxic levels of cobalt on articular cartilage biology and biomechanics. Previously, we have reported that IL-1β signalling in chondrocytes, is regulated by primary cilia and associated intraflagellar transport. Since primary cilia expression is modulated by actin organisation, we set out to test the hypothesis that sub-toxic levels of cobalt regulate cilia expression and IL-1β signalling thereby influencing articular cartilage degradation. MethodsIsolated chondrocytes and bovine cartilage explants were subjected to Co2+ in the presence and absence of IL-1β. Primary cilia were monitored by confocal immunofluorescence. Nitric oxide and PGE2 release were used to monitor IL-1β signalling. Degradation of cartilage matrix was assessed by the release of sGAG and the biomechanical properties of the tissue in uniaxial unconfined compression. FindingsSub-toxic levels of Co2+ (50 μM) blocked IL-1β-induced primary cilia elongation in isolated chondrocytes. This was associated with disruption of pro-inflammatory signalling in both isolated chondrocytes and cartilage explants, and inhibition of cartilage matrix degradation and loss of biomechanical properties. InterpretationThis study reveals that low levels of cobalt ions are anti-inflammatory, preventing cartilage degradation in response to IL-1β. This mechanism is associated with regulation of primary cilia elongation. These observations provide new insight into the potential beneficial role of cobalt and may lead to novel mechanisms for controlling cartilage inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call