Abstract
Sub-size specimen testing offers a potentially elegant solution to accompany fatigue life assessments in determining vital fatigue parameters such as effective fatigue crack growth propagation thresholds (ΔKth,eff). Additively manufactured parts stand to benefit from this in potential build-by-build fatigue validation without foregoing process-inherent material saving and low lead times. In this study, sub-size Laser Powder Bed Fusion (LPBF) produced Ti-6Al-4 V SENB specimens built in two orientations with stress relieved and annealed material states are considered. Scanning electron microscopy with electron backscatter diffraction is used to consider both meso- and microstructural features, complimented by digital image correlation (DIC) for determining local stress intensity and triaxiality around the crack tip. Results show inconsistent near-threshold fatigue behaviour linked to the microstructure of annealed material, where the fatigue threshold in sub-size specimens is reduced. Furthermore, reducing specimen size influences both in- and out-of-plane crack tip constraint, with higher constraint experienced by the sub-size specimens. Overall, this study presents and discusses the domain and suitability in using sub-size specimen FCGR threshold testing for LPBF produced Ti-6Al-4 V builds considering their unique meso- and microstructural features.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.