Abstract
The pathological mechanisms of major depressive disorders (MDDs) is associated with the overexpression of negative emotions, and the fast transient-activated patterns underlying overrepresentation in depression still remain to be revealed to date. We hypothesized that the aberrant spatiotemporal attributes of the process of sad expressions are related to the neuropathology of MDD and help to detect the depression severity. We enrolled a total of 96 subjects including 47 patients with MDD and 49 healthy controls (HCs), and recorded their magnetoencephalography data under a sad expression recognition task. A hidden Markov model (HMM) was applied to separate the whole neural activity into several brain states, then to characterize the dynamics. To find the disrupted temporal-spatial characteristics, power estimations and fractional occupancy (FO) of each state were estimated and contrasted between MDDs and HCs. Three states were found over the period of emotional stimuli processing procedure. The early visual stage (0-270ms) was mainly manifested by state 1, and the emotional information processing stage (270-600ms) was manifested by state 2, while the state 3 remained a steady proportion across the whole period. MDDs activated statistically more in limbic system during state 2 (p=0.0045) and less in frontoparietal control network during state 3 (p=5.38×10-5 ) relative to HCs. Hamilton Depression Rating Scale scores were significantly correlated with the predicted disorder severity using FO values (p=0.0062, r=0.3933). Relative to HCs, MDDs perceived the sad contents quickly and spent more time overexpressing the negative emotions. These phenomena indicated MDD patients might easily indulge in negative emotion and neglect other things. Furthermore, temporal descriptors built by HMM could be potential biomarkers for identifying the severity of depression disorders.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.