Abstract

In this paper, we address the problem of complex object tracking using the particle filter framework, which essentially amounts to estimate high-dimensional distributions by a sequential Monte Carlo algorithm. For this purpose, we first exploit Dynamic Bayesian Networks to determine conditionally independent subspaces of the object’s state space, which allows us to independently perform the particle filter’s propagations and corrections over small spaces. Second, we propose a swapping process to transform the weighted particle set provided by the update step of the particle filter into a “new particle set” better focusing on high peaks of the posterior distribution. This new methodology, called Swapping-Based Partitioned Sampling, is proved to be mathematically sound and is successfully tested and validated on synthetic video sequences for single or multiple articulated object tracking.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call