Abstract

The notion of curvature discussed in this paper is a far-going generalization of the Riemannian sectional curvature. It was first introduced by Agrachev et al. ([2015]), and it is defined for a wide class of optimal control problems: a unified framework including geometric structures such as Riemannian, sub-Riemannian, Finsler, and sub-Finsler structures. In this work, we study the generalized sectional curvature of Carnot groups with rank-two distributions. In particular, we consider the Cartan group and Carnot groups with horizontal distribution of Goursat-type. In these Carnot groups, we characterize ample and equiregular geodesics. For Carnot groups with horizontal Goursat distribution, we show that their generalized sectional curvatures depend only on the Engel part of the distribution. This family of Carnot groups contains naturally the three-dimensional Heisenberg group, as well as the Engel group. Moreover, we also show that in the Engel and Cartan groups, there exist initial covectors for which there is an infinite discrete set of times at which the corresponding ample geodesics are not equiregular.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call