Abstract
This paper, for the first time, provides sub-predictors for networked control systems (NCSs) under uncertain large communication delays. We use a time-delay approach to NCS and employ sub-predictors to partially compensate large uncertain transmission delays in the sensor-to-controller and controller-to-actuator channels by dividing the long delay into small pieces. We consider systems with norm-bounded uncertainties, and take into account Round-Robin scheduling protocol in sensor-to-controller channel. In comparison with the traditional reduction-based classical predictor involving distributed input, the sub-predictor-based feedback is more friendly in the presence of norm-bounded uncertainties and is simpler for implementation. The sub-predictor-based feedback is further extended to decentralized control of interconnected systems provided that the couplings are not strong. The stability analysis of the closed-loop system is based on the Lyapunov–Krasovskii method and the stability conditions are given in terms of linear matrix inequalities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.