Abstract

We have developed and demonstrated an image super-resolution method-XR-UNLOC: X-Ray UNsupervised particle LOCalization-for hard x-rays measured with fast-frame-rate detectors that is an adaptation of the principle of photo-activated localization microscopy (PALM) and stochastic optical reconstruction microscopy (STORM), which enabled biological fluorescence imaging at sub-optical-wavelength scales. We demonstrate the approach on experimental coherent Bragg diffraction data measured with 52 keV x-rays from a nanocrystalline sample. From this sample, we resolve the fine fringe detail of a high-energy x-ray Bragg coherent diffraction pattern to an upsampling factor of 16 of the native pixel pitch of 30 μm of a charge-integrating fastCCD detector. This was accomplished by analysis of individual photon locations in a series of "nearly-dark" instances of the diffraction pattern that each contain only a handful of photons. Central to our approach was the adaptation of the UNLOC photon fitting routine for PALM/STORM to the hard x-ray regime to handle much smaller point spread functions, which required a different statistical test for photon detection and for sub-pixel localization. A comparison to a photon-localization strategy used in the x-ray community ("droplet analysis") showed that XR-UNLOC provides significant improvement in super-resolution. We also developed a metric by which to estimate the limit of reliable upsampling with XR-UNLOC under a given set of experimental conditions in terms of the signal-to-noise ratio of a photon detection event and the size of the point spread function for guiding future x-ray experiments in many disciplines where detector pixelation limits must be overcome.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call