Abstract

Optical rectification (OR) is a popular way to generate coherent terahertz radiation. Here, we develop a sub-picosecond mid-infrared (mid-IR) light source with a tailored wavelength and pulse duration for enhancing the OR efficiency. Numerical simulations for a LiNbO3-based OR with tilted pulse-front excitation are first conducted to determine the optimal parameters of pump wavelength and pulse duration, demonstrating that the OR efficiency pumped by 4-µm sub-picosecond (0.5-0.6 ps) pulses is approximately twice the value with 0.8-µm pump at the same conditions. Guided by the simulation results, we build a BaGa4Se7-based optical parametric chirped-pulse amplification system with 1030-nm thin-disk pump and broadband mid-IR seeds. The output performances of >200-µJ pulse energy, ∼600-fs pulse duration and 1-kHz pulse repetition rate are achieved in a spectral range tunable from 3.5 to 5 µm. The large energy scalability and high parameter tunability make the light source attractive to high-efficiency OR in various materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call