Abstract
A thin amorphous silicon interlayer, inserted between the III-V semiconductor and the gate dielectric is expected to prevent III-V oxidation, as required for high-mobility channel transistors. We demonstrate that the addition of a thin Al2O3 barrier layer between the a-Si and the high-k HfO2, together with optimized post-metallization annealing, is the key to reduce the a-Si consumption and to achieve a highly scaled gate stack with equivalent oxide thickness of ∼0.8 nm. The evolution of the interfaces during growth and the quality of the stack are investigated by in-situ X-ray photoelectron spectroscopy and electrical measurements on metal-oxide-semiconductors capacitors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.