Abstract

Collagens are large structural proteins that are prevalent in mammalian connective tissue. Peptides designed to include a glycine-proline-hydroxyproline (GPO) amino acid triad are biomimetic analogs of the collagen triple helix, a fold that is a hallmark of collagen-like sequences. To inform the rational engineering of collagen-like peptides and proteins for food systems, we report the crystal structure of the (GPO)10 peptide at 0.89-Å resolution, solved using direct methods. We determined that a single chain in the asymmetric unit forms a pseudo-hexagonal network of triple helices that have a pitch variation consistent with the model 7/2 helix (3.5 residues per turn). The proline rings occupied one of two states, while the helix was found to have a well-defined hydration shell involved in the stabilization of the inter-helix crystal network. This structure offers a new high-resolution basis for understanding the hierarchical assembly of native collagens, which will aid the food industry in engineering new sustainable food systems.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call